A Systematic Framework to Identify and Prioritize Sources of Bacteria

SWWT Bacteria Working Group UWM-School of Freshwater Sciences 9-26-17

Many Sources of Contaminants

Contaminant	Potential Sources
Sediment and	Streets, lawns, driveways, roads, construction
Floatables	activity, atmospheric deposition, drainage
	channel
Pesticides and	Residential Lawns and gardens, roadsides, utility
Herbicides	right-of-ways, commercial and industrial
	landscape areas, soil wash off
Organic Materials	Residential Lawns and gardens, commercial
C	landscaping, animal wastes
Metals	Automobiles, bridges, atmospheric deposition,
	industrial areas, soil erosion, corroding metal
	surfaces, combustion processes
Oil and Grease /	Roads, driveways, parking lots, vehicle
Hydrocarbons	maintenance areas, gas stations, illicit dumping
	to storm drains
Bacteria and Viruses	Lawns, roads, leaky sanitary sewer lines, sanitary
	sewer cross-connections, animal waste, septic
	systems
Nitrogen and	Lawn fertilisers, atmospheric deposition,
Phosphorus	automobile exhaust, soil erosion, animal waste,
-	detergents

USEPA. 1999

Concentrati	Concentrations of pollutants in stormwater runoff													
from selected urban source areas														
	Total	Solids	E. coli	Zinc	Cadmium	Copper								
Source	Phosphorus	(mg/l)	(cfu/100ml)	(µg/l)	(µg/l)	(µg/l)								
	(mg/l)													
Residential	1.31	662	92,000	220	0.8	46								
Residential	1.07	326	56,000	339	1.4	56								
Commercial	0.47	232	9,600	508	1.8	46								
Industrial	1.50	763	8,380	479	3.3	76								
Industrial	0.94	690	4,600	575	2.5	74								
Residential Roofs	0.15	27	290	149	ND	15								
Commercial Roofs	0.20	15	1,117	330	ND	9								
Industrial Roofs	0.11	41	144	1,155	ND	6								
Residential Lawns	2.67	397	42,000	59	ND	13								
Driveways	1.16	173	34,000	107	0.5	17								
Commercial Parking	0.19	58	1,758	178	0.6	15								
Industrial Parking	0.39	312	2,705	304	1.0	41								

Г

Bannerman et al, 1993

Developing a Study Design

- 1) Collect and examine historical data
- 2) Identify data gaps and collect additional data as needed
- 3) Analyze data
- 4) Identify causes and sources of pollution that need to be controlled
- 5) Estimate relative contributions
- 6) Identify solutions
- 7) Implement remedial measures

Collect & Examine Historical Data

- Comparable data can be combined with future data
 - Dependent on quality/quantity
- Historical data will reveal trends or correlations between the target and the explanatory variables
- Data can guide future assessment needs

Identify Gaps/Collect Additional Data

- A thorough examination of historical data will reveal whether or not critical information is lacking
- An evidentiary, science-based decision is critical to successful mitigation
- Data collected as part of the investigative process can also serve as a baseline from which to benchmark future improvements

Analyze Data

- Relationships between dependent (target) and independent (explanatory) variables
- Rule in and rule out potential sources
- Identifying when/where/how pollution sources adversely impact water quality

– e.g. wet vs. dry weather mediated

 Relationships do not imply causation but can be used as evidentiary support

Identify Causes/Sources of Pollution

- Data analysis leads to the association of measured parameters or conditions to the dependent variable
 - Typically faecal indicator bacteria concentrations in a receiving water body
- Associations provide clear lines of evidence for one action over another as part of a decision tree approach.

Estimate Relative Contributions

- Examining lines of evidence determines the strongest associations
 - Relative contributions
- Estimating relative contributions at sites with multiple sources will target future or additional monitoring needs
- Direct solutions towards alterations that will have the greatest relative impact

Identify Solutions

- Solutions should be site-specific
- Based on a critical review of historical and recent monitoring data and field assessments
- Take into account how the resource is used
 cultural convention, finance, and feasibility
- Hard and/or naturalised engineering approaches should be considered and the merit of each explored

Implement Remedial Measures

- Once viable solutions have been identified, plans to mitigate identified pollution sources can be developed
- Plans must gain approval in order for implementation to occur
- Revisions to the original plans may be necessary
- Trade offs between the ideal and acceptable solutions may be required

Purpose of Watershed Studies

- Expand upon historic Root River monitoring conducted by the Racine Health Department
- Assemble a comprehensive database of water quality data which could be used as a baseline from which to gauge improvements
- Contribute to the development of a watershed restoration plan
- Provide science-based data to target remediation
- Link Root River water quality to coastal water quality

Over 1.6 million residents from Kenosha, Milwaukee, Racine and Waukesha **Counties interact** with and impact the watershed on a daily basis

Land Use – Root River Watershed

Impacts of Urbanization

Non-point source pollution

Impervious surface runoff
Landscape runoff

Stream bank erosion

Storm water discharge

Racine Storm Water Utility

Residential Average Impervious Area = 2,844 square feet (or 1 Equivalent Residential/Runoff Unit (ERU))

Downtown Customer Example

Industrial Customer Example

Historic Monitoring

Mouth of Root River c. 1883, Racine Heritage Museum

Racine had 7 Monitoring Stations

2004 Spatial Distribution Study

80 samples by wading or boat

Pre-rainfall, Rainfall, and Post-rainfall samples

Look for elevated levels of *E. coli*

Definite plume from the Root River

Root River <i>E. co</i>	Root River <i>E. coli</i> Densities – 2004											
SITE	MEAN <i>E. coli</i> MPN/100 ml	RANGE										
Johnson Park (R1)	1518	10 – 14,136										
Horlick Dam (R2)	1431	10 – 12,997										
Cedar Bend (R3)	3705	0 – 12,997										
Washington Park Storm Outlet (R4)	38,856	0 – 198,628										
Water Street Storm Outlet (R5)	18,020	100 – 173,287										
State Street Bridge (R6)	1372	63 – 11,199										
Chartroom (R7)	1098	20 - 9804										

Identifying Sources of Pollution

- Physical Assessments
- Sanitary Surveys (guided data collection)
- Source Tracking

2008 Site Survey

Site: Island Park footbridge behind Racine Lutheran High School

Location and surrounding area:

Located on the western branch of the river which splits around Island Park. Land to the west is residential and to the east is open space/parkland (mainly grass).

Stream bank conditions

Stream banks are in good condition with recent restoration work undertaken on the east bank adjacent to site and approximately 120m u/s (after 2005 Earth Tech stream bank assessment)

Infrastructure

Outfall (RR17) off Glenn Street adjacent to footbridge and sample locations exhibits a constant DWF.

Other comments:

This outfall is suspected of contributing to the high levels of *E*. *coli* at the sample site.

View south, downstream, from the footbridge. Both banks are in good condition.

View of the outfall off Glenn Street exhibiting DWF.

East bank sample location

Mid point sample location

View from the west bank across to the east bank sample location.

View looking north from footbridge at east bank. Conditions = high grass and little sign of erosion.

Looking for Telltale Evidence

E. Coli (MPN/100 ml):

RR17003 = >241,920 RR17004 (west pipe) = 241,917 RR17002 (north pipe) = 2,780 RR17002 (west pipe) = 30,760 RR17005 = 30,760 Racine Lutheran Outfall = 77,010

Unusual Discharge from SWO

Chemical Indicators

- pH
- Temperature
- Turbidity
- Conductivity
- Detergents
- Chlorine
- Copper
- Phenols
- Nutrients

	Turbidity vs. Precipitation, 2007-2008													
Coefficient of determinations [(R ²) left column] and correlation coefficients [(r) right column] for combined dry and wet weather data														
РРТ	Group	1 and 2	Gro	up 3	Group 4									
24 hr	0.12	0.11	0.56	0.47	0.56	0.75								
48 hr	0.28	0.53	0.60	0.44	0.61	0.78								

	Turbidity vs. Flow Rate, 2007-2008												
	Group 1 and 2	Group 3	Group 4										
R ²	0.65	0.90	0.90										
r	0.81	0.95	0.95										

Biological Indicators

- E. coli
- Human specific *Bacteroides*
- Lachnospriaceae

A)	1	2	3	4	5	6	7	8	9	10	B) *	2 3	3 4	4	5	6	7	8	9	10
				Carlos anti-																
									(Constantial											
				-		-							-							
					-								(Compared)		Constanting State					
																			and the second	Contractor of
							-													
														An Adapa		uz N				

Median *E. coli* (MPN/100ml) upstream to the mouth dry weather (Root River, 2007 – 2008)

Median *E. coli* (MPN/100ml) upstream to the mouth wet weather (Root River, 2007 – 2008)

Basin Assessments

Biofilm Assessment

Samples collected from the field demonstrated the presence of *E. coli* DNA in biofilms that developed on sterile surfaces placed in the river. The data from one of the outfalls also indicated the presence of *E. coli* DNA. However, the presence of the *E. coli* DNA in these samples could be from either live or dead cells. The data does suggest that biofilms in the Root River could be a reservoir of *E. coli*. However, more importantly, even though *E. coli* DNA was amplified, no Shiga toxin-producing bacteria were detected in any of the biofilm samples.

Bacteroides (2010)

				Bacteroides Human	Total Bacteroides	Ratio of Human Bacteroides/Total
Sample Date	EWS#	Site	Bacteroides Human	(CN/100ml)	(CN/100ml)	Bacteroides (%)
5/7/2010	1A	Horlick NW OF	Negative			
5/7/2010	2A	Horlick SW OF	Negative			
5/7/2010	3A	Horlick E OF	Negative			
5/7/2010	4A	Leudtke Off Spring	Negative			
5/7/2010	5A	Racine Lutheran OF	Positive	1,855	54,914	3.38%
5/8/2010	1A	Washington Park #2	Positive	7,020	67,023	10.47%
5/8/2010	2A	Washington Park #2	Positive	2,127	26,032	8.17%
5/8/2010	3A	Washington Park #3	Negative			
5/8/2010	4A	Water St OF W	Negative			
5/8/2010	5A	Water St OF E	Negative			
5/13/2010	IEB	Wetland Outflow	Negative			
5/13/2010	EOF	English St OF	Positive	74	20,022	0.37%
6/30/2010	1A	RR16002	Positive	4	12,232	0.03%
6/30/2010	2A	RR16005	Negative			
6/30/2010	3A	RR16007	Positive	39	17,661	0.22%
6/30/2010	4A	RR16009	Weak	7	3,589	0.19%
6/30/2010	5A	RR16012	Weak	30	2,375	1.27%
6/30/2010	6A	RR36004	Negative			
6/30/2010	7A	RR36005	Positive	386	29,433	1.31%
6/30/2010	8A	RR3601	Negative			
6/30/2010	9A	RR3602	Negative			

The ratio of human bacteroides to total bacteroides in raw sewage is ~2.2 to 8.0 (mean = 5.1) [Dr. Sandra McLellan, UWM WATER Institute]

Summary of storm water outfall results using chemical and microbiological source tracking parameters (2008)

Outfall	Percent exceedancePercent exceedanceTotal samplesDry weather		Mean <i>E. Coli</i> MPN/100 mL	Max <i>E. Coli</i> MPN/100 mL	Mean Chlorine (mg/L)	Mean Detergents (mg/L)
Glen Street	95	52	30,248	141,360	0.002	0.2
Water St. East	93	60	11,611	173,287	0.061	0.2
Leudtke/Domanik	93	52	25,212	241,917	0.006	0.2
Leudtke/Rupert	88	42	14,396	141,360	0.002	0.2
Water St. West	83	45	27,951	241,920	0.098	0.14

	Average E.Coli	Average Dry Weather <i>E.Coli</i>	Average Wet Weather E. Coli	Average Detergent concentration	Average Dry Weather Detergent	Average Wet Weather Detergent		
Location	(MPN/100ml)	(MPN/100ml)	(MPN/100ml)	(ppm)	Concentration (ppm)	Concentration (ppm)	n _{Dry}	n _{Wet}
Leudtke and Rupert	15200	15700	14300	0.12	0.14	0.08	14	8
Racine Luther Outfall	36200	44500	23400	0.16	0.15	0.18	17	11
Racine Luthern West	2100	1500	3100				18	11
Racine Luthern East	1500	600	3000				18	11

Decision Tree Approach

Decision Trees

Decision trees were created by analyzing the physical (extent of stream bank erosion, width of buffer strips, amount of impervious cover, and presence of stormwater infrastructure), microbiological (*E.coli* concentration), and environmental (antecedent precipitation) properties of each sampling location. Each site's path from the root to the leaf was determined by the decision criteria at each node of the decision tree. This method is not as comprehensive as other forms of data analysis; however, it is an informative tool for individuals or communities to begin the process of prioritizing restoration work within the watershed.

Each sampling site was classified as low, medium, medium-high, or high priority for future investigation and/or restoration.

Simplified flow chart to identify significant contaminating sources

Template decision tree developed from correlation of water quality parameters, environmental parameters and physical assessments

Another Example...

OAK CREEK WATERSHED ASSESSMENT

Spatial Variation of *E. coli* within the Watershed

					Correl	ations					
24	br	Precipita	ation (in) br	72	hr	Wa Tempe	iter erature	Volumetric Flow Rate (ft3/sec)		TSS	
24	····				, 2		C)				
r _s	р	r _s	р	r _s	р	r _s	р	r _s	р	r _s	р
0.07	0.63	0.19	0.15	0.24	0.07	0.76	0.00	-0.31	0.02	0.62	0.00
0.47	0.00	0.36	0.01	0.37	0.01	0.50	0.00	0.04	0.77	0.52	0.00
0.37	0.00	0.52	0.00	0.49	0.00	0.27	0.04	0.04	0.76	0.43	0.00
0.40	0.00	0.44	0.01	0.46	0.01	0.53	0.00	0.09	0.51	0.28	0.04
0.25	0.05	0.45	0.00	0.47	0.00	0.71	0.00	-0.08	0.56	0.66	0.00
0.39	0.00	0.54	0.00	0.51	0.00	0.63	0.00	0.00	1.00	0.56	0.00
0.40	0.00	0.55	0.00	0.50	0.00	0.64	0.00	-0.18	0.18	0.72	0.00
0.41	0.00	0.52	0.00	0.48	0.00	0.58	0.00	0.05	0.72	0.59	0.00
0.40	0.00	0.47	0.00	0.43	0.00	0.40	0.00	0.03	0.80	0.02	0.90
0.27	0.04	0.48	0.00	0.49	0.00	0.44	0.00	-0.07	0.60	0.30	0.02
0.44	0.00	0.53	0.00	0.55	0.00	0.59	0.00	-0.09	0.52	0.57	0.00
0.36	0.01	0.47	0.00	0.45	0.00	0.49	0.00	-0.20	0.13	0.54	0.00
0.37	0.01	0.48	0.00	0.46	0.00	0.44	0.00	0.10	0.44	0.46	0.00
0.38	0.03	0.55	0.00	0.56	0.00	0.42	0.01	-0.12	0.49	0.38	0.03
0.31	0.03	0.45	0.00	0.50	0.00	0.07	0.65	-0.02	0.89	0.14	0.31
0.33	0.01	0.45	0.00	0.48	0.00	0.40	0.00	-0.06	0.65	0.62	0.00
0.41	0.01	0.64	0.00	0.62	0.00	0.24	0.15	-0.02	0.90	0.64	0.00
0.43	0.00	0.48	0.00	0.51	0.00	0.30	0.02	0.09	0.51	0.57	0.00
0.29	0.03	0.24	0.08	0.29	0.03	0.29	0.03	n/a	n/a	0.27	0.04
	r	_s = Spear	man's rh	0			Sign	ificant p	values <	0.05	

Seasonality in E. coli

Oak Creek log E. coli

					Mo	onthly Ge	ometric I	Mean*					
Jul 2015	Aug 2015	Sep 2015	Oct 2015	Nov 2015	Dec 2015	Jan 2016	Feb 2016	Mar 2016	Apr 2016	May 2016	Jun 2016	Jul 2016	Aug 2016
6,017	14,073	15,157	3,617	942	1,144	85	275	68	58	351	11,418	7,555	5,363
1,048	399	269	112	113	442	n/a	364	55	57	365	1,540	371	590
116	335	889	120	95	179	20	69	13	24	24	512	253	139
521	419	199	75	107	142	18	63	10	32	100	809	473	196
1,524	1,080	228	82	171	160	27	87	15	27	66	840	3,987	720
981	1,065	374	69	128	126	44	292	23	46	349	808	701	647
1,539	1,927	555	134	175	187	55	203	21	29	145	1,264	575	315
841	1,137	1,196	46	230	217	n/a	254	23	43	174	968	662	409
752	537	540	108	601	274	n/a	214	85	10	52	758	489	599
506	792	834	173	306	222	100	70	26	17	50	1,191	444	197
1,468	1,024	643	284	210	380	87	159	20	41	97	721	960	321
3,161	3,641	1,722	1,284	1,466	803	133	122	10	27	81	1,437	1,584	824
1,124	1,805	986	331	554	1,079	116	59	42	33	34	744	1,389	604
n/a	n/a	n/a	n/a	n/a	1,120	168	109	38	25	34	742	994	591
335	1,917	417	491	436	947	n/a	n/a	20	35	32	449	242	350
1,196	3,362	1,707	747	532	907	259	76	45	54	61	915	809	511
n/a	n/a	n/a	n/a	1,140	936	178	85	31	42	39	540	708	479
458	1,604	719	171	576	913	n/a	60	23	36	73	813	1,111	186
1,958	3,250	7,384	1,439	1,382	2,270	n/a	288	25	166	68	326	1,499	391

Southwood Dr.

Location and Surrounding Area

This site is located on the Upper Mainstem of Oak Creek, in Franklin, WI. Located in a green corridor, the predominant land use upstream of this site is moderate density residential.

Stream Bank Conditions

The narrow buffers along the stream bank primarily consist of shrubs and trees, with intermittent reed grass. This stream reach is highly channelized and has minimal streambank erosion.

Infrastructure

A legacy concrete structure extends across the streambed 230 feet upstream from the sampling site. Two stormwater outfalls are located under the bridge (Southwood OF East and Southwood OF West); their pollution potential was relatively low. Outfall 105, located upstream of this sampling site, had exceedances of *E. coli* and positive hits for human specific *Bacteroides* and *Lachnospiraceae*.

Other Comments

The Southwood Drive site has significantly higher *E. coli* concentrations than the other surface water sites included in this study. Outfall 105 is a likely contributor and should be further investigated.

Aerial view of sampling site (red arrow) and surrounding land use.

Stream reach near sampling site is highly channelized.

Concrete legacy structure extends across the stream bed 70 m upstream of site.

Riparian vegetation near sampling site consisting of shrubs, trees and reed grass.

Outfall 105 42.87828200°, -87.96668900°

15th Avenue 42.92487000°, -87.87110000° **DWF PRESENT**

Community Profiling

MDS1

Stepwise Approach

- Weight of evidence
 - May be no definitive association(s)
 - FIO
 - Alternative or secondary indicators (bacteria, viruses, chemical tracers)
 - MST
 - Sanitary surveys
 - Mathematical modeling
 - Need for exposure interventions still necessary in spite of limitations

Time for a few

QUESTIONS???